
Resizing, Kernel Inversion, and
Restoration of Native Resolutions

kageru

kageru.moe

kageru@encode.moe

June 1, 2017

Abstract

For many years, publishers and digital media distributors have used various upscaling tech-
niques to digitally enhance older content or content that was produced at resolutions lower
than the current hardware standards. Prominent examples of this are Blu-ray re-releases of
old standard definition anime productions and more recently UHD Blu-ray releases of upscaled
animation and live-action movies alike.
The ability to accurately restore the original image can be useful for a number of reasons.
Firstly, an upscaled 1080p video file will be significantly larger than the original 720p version
of the same video, despite not containing any additional information. This wastes bandwidth
during the distribution process and hard drive space for long-term storage or archiving. Due to
the higher number of pixels in each frame, many computations, such as video filters and vari-
ous compression techniques, will also be more time-consuming. It can therefore be beneficial to
filter, process, compress, and distribute visual media in its “native” resolution, especially when
operating in environments where adherence to standards is not necessary.
This paper will be divided into three sections. The first section will be dedicated to exlaining the
theory behind image resizing which will be necessary to understand the later chapters. Section
two will explore different ways to find the original resolution of any given upscale, and section
three will cover ways to restore the original image data.

I. Image Resizing

When referring to digital image processing,
the terms “resizing” and “scaling” are used
to describe an action that alters the size of a
given image without affecting its overall struc-
ture and contents. There are different algo-
rithms for different types of content, some
very specific and others broadly applicable.
Disregarding neural networks and other evo-
lutionary algorithms, the basic principle is the
same for all of these. A number of reference
pixels n is selected and used to calculate the
value of a new pixel as a weighed average of
all surrounding pixels with n ∈ N\{0}. The
case n = 1 describes a point or nearest neigh-
bor resizer. Other commonly used kernels can
be found in Table 1.

In the case of neural networks, a traditional
resizer may be used to initially resize the im-
age to its target resolution. Then, a number

Table 1: Common resizers

Kernel n Comments

Linear 2 Simple linear interpolation
Cubic 4 Curves (e.g. Lagrange)
Bilinear 4 Linear in x and y direction.
Bicubic 16 4 separate cubic curves

of convolutions or similar filters is applied
to each pixel to achieve the desired result,
usually super-res with a high sharpness
and level of detail. Prominent examples of
neural network based image upscaling include
waifu2x,1 NNEDI3,2 and Google’s RAISR3.

1github.com/nagadomi/waifu2x
2avisynth.nl/index.php/Nnedi3
3I’d really recommend reading this article to get a

general idea of the technology behind neural re-
sizers: research.googleblog.com/2016/11/enhance-raisr-
sharp-images-with-machine.html. For a more technical
and detailed description, read the corresponding paper
here: arxiv.org/abs/1606.01299

1

mailto:kageru@encode.moe
https://github.com/nagadomi/waifu2x
http://avisynth.nl/index.php/Nnedi3
https://research.googleblog.com/2016/11/enhance-raisr-sharp-images-with-machine.html
https://research.googleblog.com/2016/11/enhance-raisr-sharp-images-with-machine.html
https://arxiv.org/abs/1606.01299


Resizing • Kernel Inversion • Native Resolutions

While the latter examples will produce
seemingly arbitrary outputs depending on the
data used to train the models, the former are
deterministic.4 This means that such a re-
size operation will always yield the same re-
sult and can be inverted as long as no infor-
mation was lost.5,6

II. Native Resolutions

In the context of this paper, the term “na-
tive resolution” will be used to describe the
resolution that any given material was filmed,
scanned, drawn, animated, or generally pro-
duced at. A video file originally filmed in
720p that was later upscaled to 1080p for
the Blu-ray release will therefore have a res-
olution of 1920x1080, but its native resolu-
tion will be 1280x720. Restoring this original
state can be beneficial in a number of scenar-
ios, such as processing, compression, distri-
bution, and storage. Even if the result has
to be consistent with the original release—
possibly having to adhere to the same hard-
ware standards—reversing a “cheap” upscale7

and using a more sophisticated resize algo-
rithm to create a subjectively better high res-
olution image is also possible.8

There are multiple ways to find the native res-
olutions9 of an upscale image. Two of them
will be described in this chapter.

i. Fourier Transforms

The first method is fairly well-known in cer-
tain online communities and has been used for
over a decade to identify upscales of Japanese

4Hypothetically, if the exact training model is known, the
filtering can be reversed by combining deconvolutions with

a reversal of the “cheap” resizer that was used during the
first resize step.

5Which usually translates to “if the image was upscaled”.
6NNEDI3 is a special case, as it only interpolates every

other pixel in an image without touching the reference
pixels. Thus, removing every other row of pixels in an
image will reverse the effects of NNEDI upsampling. Only
magnification by a factor 2n for n ∈ N is supported.

7such as bilinear resizing
8Companies like the German streaming service “Anime on
Demand” do this to resize native 720p material to higher

resolutions to conform to their standards.
9When dealing with synthetic material, is technically pos-
sible to have multiple native resolutions in one frame.

Figure 1: Fourier analyses. Left: native 1080p
video, right: SD upscale. ©Anibin

animation.10 After transforming the image
into the frequency domain, the frequency of
the image components can be used to draw
conclusions regarding the material’s native
resolution. Very small image components and
fine details are represented high frequencies,
whereas the basic image structure will be rep-
resented by mid to low frequencies. The ab-
sence of high frequencies is likely caused by an
upscale, as an upscaled image does not con-
tain high-frequency information. Figure 1 il-
lustrates this.

ii. Error measurements

Another way to find native resolutions is sim-
ple trial and error. This is advantageous as it
is simple to implement and can identify multi-
ple resolutions within one image, however, the
process is slower than Fourier transforms.11

An inverse resizer12 is used to downscale to all
possible resolution or all resolutions within a
sane range (e.g. 400p-1079p). The resulting
image is then upscaled back to its source res-
olution and the two images are compared. At
the correct resolution, the error will be signif-
icantly smaller than for all other resolutions.
An example implementation of this using the
frame server software Vapoursynth has been
released by the author. The relevant part is
shown in figure 2.13

10Please refer to anibin.blogspot.de for examples.
11A few seconds per frame without multithreading is still

sufficiently fast. After all, only a few frames per video

have to be analyzed.
12More details in chapter 3
13The full script is available here:

gist.github.com/kageru/549e059335d6efbae709e567ed081799

2

http://anibin.blogspot.de/
https://gist.github.com/kageru/549e059335d6efbae709e567ed081799


Resizing • Kernel Inversion • Native Resolutions

Figure 2: Measuring the resize error

def get_error(source, width, height):

down = inverse_bilinear(source, width, height)

up = down.resize.Bilinear(source.width, source.height)

error = core.std.Expr([source, up], 'x y - abs') # absolute difference

error = core.std.PlaneStats(error)

luma_error = mask.get_frame(0).props.PlaneStatsAverage

return luma_error # this is a number between 0 and 1

III. Inverse Resizing

As mentioned in chapter 1, “traditional” re-
sizers are deterministic mathematical formu-
las which can be inverted if all necessary pa-
rameters are known. The process can be de-
scribed as A ∗ x = b, where A is a matrix
that depends on the resize kernel and param-
eters, x is a vector of input pixels, and b is the
vector of output pixels. If the originally used
resize kernel is known, A can be calculated.
b is known as it is part of the final image.
With this knowledge, the linear equation can
be solved to restore the original pixels in x.14

14For a more detailed explanation, read the descrip-
tion of Frechdachs’ Vapoursynth-Descale plugin here:
github.com/Frechdachs/vapoursynth-descale

3

https://github.com/Frechdachs/vapoursynth-descale

	Image Resizing
	Native Resolutions
	Fourier Transforms
	Error measurements

	Inverse Resizing

